Search results

Search for "thiyl radical" in Full Text gives 12 result(s) in Beilstein Journal of Organic Chemistry.

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • (SET) process, generating a chlorine radical and an acridine radical F. The chlorine radical adds to the less-substituted terminal position of the alkene to produce the more stable secondary radical. The acridine radical F then undergoes a second SET reaction with a thiyl radical G, which, upon
  • combination with a chloride anion, regenerates the initial acridinium catalyst 161. The thiyl radical is formed through hydrogen atom transfer (HAT) with thiol 150, thus completing the second catalytic cycle. Hence, the key distinction from Nicewicz's work is that in the Ritter protocol, chloride undergoes
PDF
Album
Review
Published 15 Apr 2024

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • ]. In a typical thiol–ene system, the polymerization undergoes a free-radical chain mechanism, involving an initiation step from a thiol group via radical transfer or homolysis (Scheme 11, initiation), radical addition of the thiyl radical to the ene functionality (propagation 1), transfer from the
PDF
Album
Review
Published 18 Oct 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • formation of N-heterocycles [114]. Thiyl radical catalysis Thiyl radicals [115] can undergo hydrogen atom abstraction from substrates and reversible addition to double C–C bonds [115][116][117]. The corresponding thiols can play the role of hydrogen atom donors. The fast hydrogen atom abstraction from
  • (for example, amines, alkenes, benzyl ethers) by electron-deficient aryl cyanides under photoredox conditions. An example of such process is presented in Scheme 23 [122]. The key stages of the proposed mechanism include the photoredox-catalyzed generation of a thiyl radical and anion radical from ArCN
  • , and the allylic hydrogen atom abstraction by the thiyl radical. The final product is formed by the coupling of the ArCN anion radical with an allylic radical. As was mentioned above, thiyl radicals were mainly applied for the cleavage of activated C–H bonds. Recently, the tetrafluoropyridinyl thiyl
PDF
Album
Perspective
Published 09 Dec 2022

BINOL as a chiral element in mechanically interlocked molecules

  • Matthias Krajnc and
  • Jochen Niemeyer

Beilstein J. Org. Chem. 2022, 18, 508–523, doi:10.3762/bjoc.18.53

Graphical Abstract
  • radical addition of a thiol-based stopper to the α,β-unsaturated carbonyl unit in 12% yield. In this reaction, addition of the thiyl radical to the β-position first gives rise to the corresponding rotaxane radical with the unpaired electron in the α-position, followed by hydrogen abstraction from the next
PDF
Album
Review
Published 06 May 2022

All-carbon [3 + 2] cycloaddition in natural product synthesis

  • Zhuo Wang and
  • Junyang Liu

Beilstein J. Org. Chem. 2020, 16, 3015–3031, doi:10.3762/bjoc.16.251

Graphical Abstract
  • ) catalyst and subsequent base-promoted epimerization produced meloscine (158) in 83% yield. In 2017, Yang and co-workers disclosed the synthesis of (−)-pavidolide B (166) by using a thiyl-radical-mediated [3 + 2] annulation reaction to create four contiguous stereocenters on tricycle 162 in one step [71][72
  • on 160 to the enone and produces 161. The newly formed 161 was subjected to 5-exo radical addition to the allyl sulfane and subsequent loss of a thiyl radical produces 162. A successive hydrolysis/decarboxylation upon heating and cleavage of acetal on 162 afforded aldehyde 163 in 90% yield. Coupling
  • -cation equivalent in [3 + 2] cycloaddition in the synthesis of (±)-cuparene (13) [69]. The recent advances of [3 + 2] annulation in natural product synthesis. (A) The preparation of meloscine (158) features a cascade radical annulation of divinylcyclopropane [70]. (B) Thiyl-radical-mediated [3 + 2
PDF
Album
Review
Published 09 Dec 2020

Recent developments in enantioselective photocatalysis

  • Callum Prentice,
  • James Morrisson,
  • Andrew D. Smith and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2020, 16, 2363–2441, doi:10.3762/bjoc.16.197

Graphical Abstract
  • desired α-functionalised aldehydes 16 (14 examples up to 97:3 er) or cyclization products 17 (15 examples up to 98:2 er) in excellent yields and enantioselectivities. A SET process between thiyl radical 18• and [Ir]•− is proposed to complete both catalytic cycles. Another tricatalytic system developed by
PDF
Album
Review
Published 29 Sep 2020

Photocatalyzed syntheses of phenanthrenes and their aza-analogues. A review

  • Alessandra Del Tito,
  • Havall Othman Abdulla,
  • Davide Ravelli,
  • Stefano Protti and
  • Maurizio Fagnoni

Beilstein J. Org. Chem. 2020, 16, 1476–1488, doi:10.3762/bjoc.16.123

Graphical Abstract
  • (trifluoromethyl)thiyl radical, which added onto the double bond of 17.1a–d, and finally delivered the desired products 17.5a–d in good yields, through the intermediacy of radicals 17.3·a–d and iminyl radicals 17.4·a–d [85]. The double bond of acrylamides embedded into a 1,7-enyne framework likewise allowed the
PDF
Album
Review
Published 25 Jun 2020

An overview on disulfide-catalyzed and -cocatalyzed photoreactions

  • Yeersen Patehebieke

Beilstein J. Org. Chem. 2020, 16, 1418–1435, doi:10.3762/bjoc.16.118

Graphical Abstract
  • ; photocatalysis; thiyl radical; Introduction Organic disulfides are often used as the skeleton for drugs, pesticides, rubber auxiliaries, polymers, and electronic materials [1]. Over the past decade, organic disulfide-involving photoreactions have attracted increasing attention. Disulfides have versatile
  • and co-workers reported an excellent thiyl radical-catalyzed enantioselective cyclization reaction of vinylcyclopropanes with alkenes [7]. For the extension of this concept, in 2018, Miller and co-workers reported a UV-light-promoted disulfide-bridged peptide-catalyzed enantioselective cycloaddition
  • of vinylcyclopropanes with olefins [8]. The reaction mechanism of this cycloaddition process was similar to other thiyl radical-catalyzed cycloaddition cascade reactions. The alkylthiyl radical generated by the homolysis of a disulfide-bridged peptide precatalyst under UV-light irradiation triggers
PDF
Album
Review
Published 23 Jun 2020

Towards the preparation of synthetic outer membrane vesicle models with micromolar affinity to wheat germ agglutinin using a dialkyl thioglycoside

  • Dimitri Fayolle,
  • Nathalie Berthet,
  • Bastien Doumeche,
  • Olivier Renaudet,
  • Peter Strazewski and
  • Michele Fiore

Beilstein J. Org. Chem. 2019, 15, 937–946, doi:10.3762/bjoc.15.90

Graphical Abstract
  • thiyl-radical-mediated reactions have been extensively investigated for the preparation of carbohydrate derivatives [20] and some dithioether phospholipid and glycolipid analogues [21][22], no examples were reported for the synthesis of n-alkyl thioglycosides by using thiol–ene coupling [18][19]. In
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2019

β-Hydroxy sulfides and their syntheses

  • Mokgethwa B. Marakalala,
  • Edwin M. Mmutlane and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1668–1692, doi:10.3762/bjoc.14.143

Graphical Abstract
  • mechanism adumbrated in Scheme 29 [66]. The thiyl radical resulting from the initial reaction of TBHP and thiophenol selectively adds to the terminal end of the C=C bond of 80 to form intermediate radical 82. Oxidation with O2 leads to the formation of peroxy radical 83, which abstracts a hydrogen radical
  • corresponding β-hydroxy sulfides. The authors proposed the mechanism depicted in Scheme 31 [67]. The hydroxysulfurization commences with the formation of a thiyl radical that is generated by the heterolytic cleavage of the disulfide upon reaction with HSO2−. The thiyl radical then adds to the double of the
  • ]. Treatment of the thiol-ene 113 with the radical initiator 2,2-dimethoxy-2-phenylacetophenone (DPAP) and the photosensitizer 4-methoxyacetophenone (MAP) in DMF ensued to the formation of the thiyl radical 114 that underwent intramolecular cyclization to provide a mixture of biologically important thiosugars
PDF
Album
Review
Published 05 Jul 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
  • ]. The thiyl radical was generated as reactive key intermediate from a variety of thiols by photooxidation using [Ru(bpz)3](PF6)2. Aliphatic and aromatic thiols react with aliphatic and aromatic alkenes and alkynes in high to excellent yields to the anti-Markovnikov addition adducts. However, an excess
  • trichloromethyl radical by single-electron reduction of bromotrichloromethane. Subsequent hydrogen atom abstraction from the thiol yields chloroform and the reactive thiyl radical, which then undergoes radical thiol–ene coupling. The scope comprises the coupling of alkyl, acyl and benzyl thiols with alkenes. The
  • authors propose that the photo-excited state of the organic dye Eosin Y is reductively quenched by the aryl thiol to form the Eosin Y radical anion and the respective aryl thiyl radical cation. Neutral Eosin Y is regenerated through oxidation of the radical anion by dioxygen. The resulting superoxide
PDF
Album
Review
Published 05 Jan 2018

Enantiospecific synthesis of [2.2]paracyclophane- 4-thiol and derivatives

  • Gareth J. Rowlands and
  • Richard J. Seacome

Beilstein J. Org. Chem. 2009, 5, No. 9, doi:10.3762/bjoc.5.9

Graphical Abstract
  • ], sigmatropic rearrangements [21] and as either thiyl radical precursors [22] or as a source of hydrogen in radical chemistry [23]. With the appropriate sulfur derivative, stereoselective variants of all these transformations can be envisaged. Currently, there are few examples of sulfur containing [2.2
PDF
Album
Full Research Paper
Published 12 Mar 2009
Other Beilstein-Institut Open Science Activities